
Journal of Statistical Physics, Vol. 53, Nos. 1/2, 1988 

Equivalence Relations Between Deterministic and 
Quantum Mechanical Systems 

Gerard 't H o o f l  1 

Received March 28, 1988 

Several quantum mechanical models are shown to be equivalent to certain 
deterministic systems because a basis can be found in terms of which the wave 
function does not "spread." This suggests that apparently indeterministic 
behavior typical for a quantum mechanical world can be the result of locally 
deterministic laws of physics. We show how certain deterministic systems allow 
the construction of a Hilbert space and a Hamiltonian so that at long distance 
scales they may appear to behave as quantum field theories, including inter- 
actions but as yet no mass term. These observations are suggested to be useful 
for building theories at the Planck scale. 
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1. I N T R O D U C T I O N  

Q u a n t u m  mechanics works. (1~ In  spite of many  obvious objections raised 
to q u a n t u m  mechanics when it was first proposed, it has proven to be a 
magnificent  scheme for describing atomic and  subatomic  mechanics as well 
as for predict ing new phenomena  correctly. Phi losophical  objections 
purpor t ing  that  there was something wrong with the logic of the theory 
never stood in the way of its usefulness. No th ing  seems to be wrong in 

using q u a n t u m  mechanics to describe interact ions among  atoms and 
fundamenta l  particles. 

Yet, in my view, there are reasons to believe that our  present 
unders tand ing  of the fundamenta ls  of q u a n t u m  mechanics (21 is incomplete,  
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and the presently popular ways to interpret its "logic" are not quite 
satisfactory. 

The first is cosmological. When the classical trajectories of stars and 
galaxies are extrapolated backward in time, it is found that the earliest 
configurations were highly concentrated inside a tiny, nearly pointlike 
universe, strongly suggesting that it all started with a "big bang," and that 
the initial state at t = 0 was simple, perhaps a fundamental singularity. 

But if we regard the presently observed state of the universe as a "state 
in Hilbert space," extrapolation backward according to the laws of quan- 
tum mechanics should give something entirely different. One would expect 
that the observables at this initial singularity cannot possibly commute 
with the present observables and therefore extrapolation backward in time 
should give some linear superposition of states with different cosmic ages, 
not just one single "age of the universe." Yet this is what astrophysicists 
assume when they launch big bang scenarios. 

If there is a "reality ''~31 beyond what is described by standard quantum 
mechanics, there should be a way to understand it. In this respect it is 
possible to add to van Kampen's ten theorems on quantum mechanics ~11) 
an l l th :  

Quantum mechanics is not a theory about reality, it is a prescription 
for making the best possible predictions about the future if we have 
certain information about the past. 

Physicists have learnt to live with the fact that these predictions are 
always statistical in nature. An obvious remark is that probably our infor- 
mation on the past was also incomplete. But whoever makes such 
statements is quickly put in a corner together with those other believers in 
"hidden variables ''(2'4) and is politely reminded of the Einstein-Podolsky- 
Rosen paradox ~5) and Bell's theorems. (6) Now, those theorems and 
Gedanken experiments show that one cannot attach labels to electrons to 
make their movements look deterministic. They do not prove that hidden 
variables inundating the entire vacuum cannot restore predictability in a 
formal way. Indeed, our work will show how such an idea can perhaps be 
made respectable. 

The second reason why we might need an amendment to quantum 
mechanics is our inability to reconcile quantum mechanics with general 
relativity. In ordinary quantum field theory (which may be seen as a 
reconciliation between quantum mechanics and special relativity) there are 
infinities that can be made harmless by renormalization. But general 
relativity requires space-time curvature to be "quantized" and this time the 
infinities are much more fundamental. I am not referring to infinities that 
might occur when one attempts to renormalize the perturbation expansion, 
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because at least in principle superstring theories might have found the 
correct treatment for those. Much more enormous are the problems one 
encounters when one tries to "sum" such perturbation expansions. Because 
the gravitational constant (or, alternatively, the string constant) has non- 
vanishing dimensions, there are always phenomena for which the pertur- 
bation expansion is inapplicable. The small-distance structure in such 
theories is simply not understood. 

Closely related to the problem of quantizing gravity is the mystery of 
the vanishing cosmological constant. In quantum gravity space-time can be 
flat only in the vacuum state. This turns the vacuum state into something 
very special, not just the outcome of a lengthy mathematical calculation 
required to find the solution of 

H I 0 } = E I ~ }  

with lowest E. 
In a series of attempts to obtain more understanding in this field, I 

argued that the number of mutually orthogonal states in Hilbert space 
within a given volume (more precisely, inside a closed surface with given 
area) is finite (7) and given by the total surrounding area. This suggests that 
the laws of physics at very tiny (Planckian) distance scales are simpler than 
in ordinary quantum field theories. Perhaps they are deterministic. 

In this paper I will argue that a deterministic set of physical laws at 
tiny distance scales is not in contradiction with our present understanding 
of quantum mechanics. 

The simplest model in which the laws of quantum mechanics agree 
with a deterministic "underlying" theory is the "spinning particle in a 
magnetic field." This I explain in Section 2. 

But the model of Section 2 is too small to exhibit one of the most 
essential features of quantum mechanics: the way it can be combined with 
thermodynamics and statistics so that the "uncertainty relation" can be 
seen in ordinary experiments. For this we need a system with "locality": an 
experimental region can be separated from a laboratory with detectors, 
which can detect because they are in a metastable initial state. We need to 
have a Hamilton density J'4F(x) which is bounded from below so that we 
can do thermodynamics. A model which is more interesting in this respect 
(the one-dimensional free massless fermion gas) is constructed in Section 3. 

One might argue that also this model is too special, so ! show in 
Section 4 how it can be generalized to the (3 + 1)-dimensional case. Adding 
masses directly, however, seems to be (prohibitively?) difficult. 

The most spectacular models that may combine quantum mechanics 
with deterministic mechanics are what I call the "deterministic reversible 
cellular automata." They are defined in Section 5. The previous models 
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were simple, exactly soluble examples, but these are much more interesting. 
With a modern personal computer it was easy to verify that in most cases 
these automata evolve chaotically. There can be no other way to treat their 
long-distance behavior than by using statistics. 

This is not an easy subject and my first attempt to understand whether 
and how these complicated automata mimic quantum mechanics was by 
using the Baker-Campbell-Hausdorff  formula. This first attempt 
(explained in detail in Appendix A) was suggestive but not quite con- 
clusive. I discuss a possible strategy further in Section 6. 

The most interesting case would be when an effective quantum field 
theory emerges with a large fundamental distance scale. At large scales only 
renormalizable (and superrenormalizable) couplings survive, so one of the 
renormalizable theories should be reproduced. This possibility (and many 
other aspects of these results) remains to be explored. 

In Appendix B I discuss why it is important to focus on models with 
discrete time steps. 

I formulate conclusions .in Section 7. 

2. S P I N N I N G  PARTICLE IN A MAGNETIC FIELD 

Consider an N ( =  2l + 1 )-dimensional Hilbert space with Hamiltonian 

H [ m ) = i z m [ m ) ,  rn= - l , . . . , l  (2.1) 

This is an ordinary quantum mechanical system known as an elementary 
exercise from many textbooks. In terms of the observables Lx, Ly, and Lz 
we surely have all aspects of quantum mechanics. The evolution operator is 
u(t, c), 

[ m ) t =  U(t, t ' ) l m ) c = e  iltm(t--t')[m)c (2.2) 

But now use as a basis the set 

1 
[ g ) = - - ~ m  e 2~img/Nkrn), g = 0  ..... N - 1  (2.3) 

Suppose that we concentrate on special time intervals: 

t - t' = 2z~k/#N, k integer (2.4) 

From (2.2) we have 

~N~me--2nimg/N--2ni k/N]m> [ g + k ( m o d U ) )  (2.5) U ( t - t ' ) l g ) =  = 
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In other words, the state I g )  evolves into the state ] g + k )  after k 
fundamental time intervals. If we limit ourselves to these time intervals and 
this basis of states, the wave function does not spread. 

Conversely, we could consider a system that can be in N different 
states l g ) ,  g = 0  ..... N - 1 .  At regular time intervals 2~z/l~N the system 
jumps from ] g )  into the next position, ] g + 1 ), and if it were in the state 
I N -  1 ), it jumps back to 10). The evolution operator is (2.5). This system 
is obviously deterministic. Yet in some sense it is equivalent to our 
"quantum mechanically" spinning particle: no one could stop us from 
defining a new set of basis elements Ira), 

1 I m ) = - - ~ g  eR='gm/lVlg ), m= - I  ..... l (2.6) 

and operators Lx, Ly, and Lz. In terms of these our deterministic system 
may appear to be quantum mechanical. But in particular if the time 
intervals 2~/t~N are extremely short, one may suspect that a macroscopic 
observer will not be able to distinguish the deterministic model from the 
quantum mechanical one. 

This depends on which quantities/operators should be considered 
to be observables. Here in this model this is ambiguous and so the 
"interpretation" of the spinning electron as a deterministic system can be 
criticized. Now let us turn to the next model. 

3. T H E  O N E - D I M E N S I O N A L  FREE M A S S L E S S  F E R M I O N  GAS 

Consider the following deterministic system. We have a series of cells 
labeled by integers x E ~. The series is either infinite or periodic. 2 In each 
cell there is room for two "particles," a left-goer (l) and a right-goer (r). So 
each cell can be in four states: 

II, r ) = 1 0 , 0 ) ,  I1 ,0) ,  10,1), or I1 ,1 )  (3.1) 

There is a clock showing time in discrete time steps which we take to 
be integers. After every tick of the clock every left-going particle moves 
from its cell to the cell at its left, and the right-goers move one cell to the 
right. 

"Physically" this model is rather trivial and featureless. Left-goers 
move to the left eternally and right-goers move to the right, both with 
speed one. But now consider its "Hilbert space." A basis of states is 

2 In the latter case, however, our analysis is not quite accurate at the boundary. 
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{Hx [lx, rx)} ,  where at each x, l x and r x may each be either zero or one. 
Let the evolution operator for one unit of time be 

U(t + 1, t) (3.2) 

and the way in which it operates in our Hilbert space should be clear. 
Because we have zeros and ones, it will be convenient to introduce 

anticommuting creation and annihilation operators. First, define 

at- (x) t0, r~) = 0  

a t ( x ) l l ,  r~) = IO, r~5 
(3.3) 

aT(x)[ l  ~, O} = 0  

  (x)llx, 5 = fix, 05 

whereas the operation of the crz, r operators does not depend on the contents 
of the other cells. 

And then, applying a Jordan-Wigner transformation: 

Ftz(xl) = ( -  1)z~<x~ '-~ cr,(x ,)  (3.4) 

I/.gr(Xl ) ~__ (__ 1)Z /+Za<xl rx CYr(Xl ) (3,5) 

so that 

It will be clear that 

{ e;(x), %(x')} =0 
(3.6) 

7~l(x, t ) =  ~ t ( x +  t, 0) 
(3.7) 

~Ur(x, t) = ~r(x - t, 0) 

because the ordering of the particles used in (3.4) and (3.5) is time 
independent. 

Fourier transforming 

1 ~z ~'i(k, t) e -2~ikx/L (3.8) ~ i ( x , t ) = ~ k  L 

where L is temporarily taken to be a finite period, and the sign of k is 
according to convention in quantum field theory, we have 

~'(k, t) = e-~2~ik'/c)~3~(k, O) (3.9) 
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with 

Now 

Therefore, 
operator: 

a3~u/= • (3.10) 
r r 

E~'~(-k) ~i(k), ~j(k ' ) ]  = -~'j(k)bij~kk, (3.11) 

(3.9) leads to the following expression for the evolution 

F 2hi ~ k~ ( -k )  a3 ~(k) 1 U(t+l , t )=exPL L k (3.12) 

Equations (3.1 l) and (3.12) imply (3.9), whereas the overall sign is checked 
by observing that indeed 

U(t+ 1, t)10> = 10> (3.13) 

Therefore, if we reexpress Eq. (3.12) in terms of our original basis of the 
states I]x ]lx, rx), it just reproduces the various permutations without any 
minus signs. 

The importance of (3.12) is that this evolution operator now is 
generated by a Hamiltonian operator, 

2 / c  H= - -L  ~ k~ ( -k )  o- 3 ~(k) (3.14) 

The integer k is only defined mod L and therefore this H, in contrast with 
the evolution operator U of Eq. (3.12), is not unique [it is easy to verify 
that adding L to k does not alter (3.12)]. 

The infinite-volume limit of (3.14) is 

H= - f'+~_~ k ~ ( - k )  a 3 ~(k) dk (3.15) 

where now 

T(x) - (2~),/2 . dk e-'kx~(k) (3.16) 

and a is an arbitrary boundary (which could even depend on k). 
In the following I choose for convenience a = 0, but it will be impor- 

tant to realize that the essential features of this system will be largely 
independefit of a, as long as 

]al < ~ (3.17) 
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The arbitrariness of the Hamiltonian is of course related to the fact 
that so far we have refused to tell what the system looks like at fractional 
time values. It  will be important  to note that our Hamiltonian is not 
exactly the sum of local terms, because in x space it is 

H= ~ 6(x-x') ~(x)a3~(x') (3.18) 
x ,  x 

with 

{~ if x = 0 

kdkeikX= -1)x+l/ix if x r  (3.19) 

But in the continuum limit it will become hard to distinguish it from 

(3.20) 

The essential point in this model now is that H is extensive: it grows 
with the volume of the system. In principle one could always redefine H 
such that its eigenvalues are all between 0 and 2~, because the original 
system was only well determined at integer times. We should not make 
such a redefinition though, because we wish to keep H extensive. Two por- 
tions of our model that are far apart  should not be able to communicate; 
their Hamiltonians add up and commute mutually. This would no longer 
be the case if we restricted H to lie between 0 and 2~z. 

That  our model corresponds to a free, massless fermion gas should by 
now be obvious. The ground state of H is what we get if all left-levels with 
positive k and all right-levels with negative k are occupied and the others 
are empty. Thus, we have a finite Dirac sea (it is finite because our cells 
were chosen to have a finite size, so that there is a cutoff in momentum 
space). Physical particles are the excitations above this lowest energy state. 
A single-particle state has 

H =  Ik[ (3.21) 

It is a left-goer or anti-right-goer when k < 0  and an anti-left-goer or 
right-goer if k > 0. 

Note that such a particle is truly "quantum mechanical": If we try to 
localize it at t = 0 by squeezing the wave function to a narrow region in our 
one-dimensional space, the wave function will quickly spread, because it is 
always a superposition of positive and negative k values. 
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Of course, our "vacuum" is actually a very complicated linear super- 
position of all possible states. All these evolve deterministically. This is why 
one could say that the vacuum contains "hidden variables." 

What we really need this vacuum, and the other excited states, for is to 
do thermodynamics. Then we can assume that at some point our system is 
in thermal equilibrium, which is described by a density matrix 

p = e  - ~  (3.22) 

It is lhere that we really need an extensive Hamiltonian, bounded from 
below by a single vacuum state and unbounded from above (in the infinite- 
volume limit). With (3.22) one could handle our system statistically. The 
problem is: the model of this section is exactly soluble and statistical treat- 
ment is rather pointless. What we need is a nontrivial model. Interacting 
systems will be considered in Section5. First, let us consider a 
generalization of the above model to more space dimensions. 

4. M A S S L E S S  F E R M I O N S  IN M O R E  D I M E N S I O N S  

What we discovered in the previous section is that the theory of 
massless fermions in 1 + 1 dimensions, with a cutoff in momentum space, 
allows the introduction of ever-commuting observables. In anticipation of 
their possible significance to the real (quantum) world, I will from now on 
refer to these as "primordial" observables. They propagate in a deter- 
ministic fashion. In the model the primordial observables were the Dirac 
fermion occupation numbers (counting left- and right-goers seperately) in 
all cells x. The basis generated by these primordial observables will be a set 
of states that I call "primordial" states. In this basis the wave function does 
not spread. 

The primordial observables in the model of Section 3 could be 
described in terms of the Dirac fermions, before they were allowed to fill 
the Dirac sea. A single Dirac fermion was deterministic because it either 
moves to the left or to the right with constant speed. Let us now try to 
find primordial observables for a single massive Dirac fermion in 3 + 1 
dimensions. 

Its wave function is ~(x)  and the Hamiltonian H satisfies 

H0(x )  = (74m + ~iPi) O(x) 

where 74 and e~ are anticommuting Dirac matrices. Further, 

(4.1) 

Pi = - i  O/Ox~ (4.2) 
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The operators x~, Pi, 74, and ai satisfy the equations of motion 

d 
xi  = - i [ x ~ ,  HI  = c~ i (4.3) 

dt 

d 
p~ = - i [ p i ,  HI  = 0 (4.4) 

dt 

d 
"24 = - i [74 ,  H]  = - 2 i 7 4 ~ p  ~ (4.5) 

dt 

d 
-s c~i = - i [  ~+, H I  = 2i7 4 ct+m + iEc~gc~i] p/ (4.6) 

In the general case I was unable to select out of these noncommuting 
operators a complete set of primordial, commuting observables. But if 
m = 0, things simplify. From now on, m = 0. 

Of course the momentum p~ is conserved [Eq. (4.4)]. Let 6 be the 
direction of the momentum: 

p i = ~ i p  (4.7) 

Let us choose coordinates such that 6 is in the 3-direction. Then from (4.6) 
we find that 0~ 3 is conserved. Its eigenvalues are _+ 1. Therefore, x3 is also a 
primordial observable: 

x3(t) = X3(0)  -~- ~3 t (4,8) 

Finally, 75 commutes with H if m =0.  All together we now have the 
conserved quantities ~ (two independent continuous degrees of freedom), 
(6. c~) (one 7/2 degree of freedom), and 75 (one 7/2 degree of freedom), and 
the ever-commuting operator (x" 6) (one continuous degree of freedom). 
Together they span the complete one-particle Hilbert space, and in turn the 
one-particle Hilbert spaces can be multiplied to give a primordial basis in 
the "second-quantized" field theory. 

It is interesting to see how these deterministic variables behave in 
space-time. For  every Dirae particle we apparently only have the direction 

6 of its movement and one coordinate (x .  6) parallel to this direction. In 
other words: the Dirac fermion is a flat sheet, moving with the speed of 
light in one direction. The (fixed) variable (6-c~)= +_1 tells for every sheet 
in which of the two possible directions it goes. 75 is a dummy variable. 
Being like neutrinos, the massless Dirac fermion does not have to have 
both chiralities. 

Some sort of cutoff in momentum space would be desirable to 
understand the procedure of filling up the Dirac sea. In some sense this 
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might correspond to dividing space into cells, just like we did in one 
dimension, but this is now somewhat more difficult. A consequence of 
dividing space into cells would be that time steps will also be discrete. I 
elaborate on this in Appendix B. 

Adding mass is not possible within the above scheme. I suspect that a 
cellular au tomaton  as described in the next section might be possible such 
that massive fermions are mimicked. Note that in general, mass terms will 
flip the direction of the movement  of a sheet. 

5. THE DETERMINISTIC,  LOCAL, REVERSIBLE CELLULAR 
AUTO MATO N 

I generalize the models of the previous section in the following way. 
An infinite array of cells is arranged in a regular pattern. Each cell contains 
a discrete, finite variable or set of variables. Label all possible states a 
single cell x can be in by an integer f (x ) ,  with 0 ~<f (x )<  N. There is a 
clock that ticks, and at every tick the system jumps from a state f , (x )  into 
a state f t+  ~(x) according to some deterministic prescription. This makes it 
a deterministic cellular automaton.  

The automaton is local if at each x the new configuration f ,+l(X)  
depends only on the values f , (x ' )  at the points x '  which are the immediate 
neighbors of x or x itself. The automaton is reversible if the mapping 
f , (x)  ~ f , +  ~(x) has a unique inverse, so that at any time t we can put the 
engine into reverse and recover the earlier configurations. If the number  of 
cells x is V, the Hilbert space spanned by the states {f(x)} is N v dimen- 
sional, and if the automaton is reversible, the evolution operator U(t + 1, t) 
in this Hilbert space is unitary. 

From now on, when I use the word "automaton,"  I mean a deter- 
ministic cellular au tomaton that is reversible and local. 3 Such an 
automaton is easy to construct. A typical example is the following con- 
struction. At every link connecting neighboring cells x and x'  the states 
( f ( x ) , f ( x ' ) )  can be in N 2 possible configurations. An evolution operator 
Ux.x, is chosen to be an element of the permutat ion group P(N2). I choose 
to order the links (x, x ' )  in a certain way. The operation 

u ( t +  1, t) gf [ I  ux, x (5.1) 
(xx') 

then defines an automaton of the kind we need. 
Automata  are ideal targets for personal computers and with some 

simple programs I tested many examples. It is important  to restrict 

3 One could use the acronym "CARL," but I prefer to avoid acronyms. 

822/53/1-2-22 
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considerat ion to reversible ones. In the majori ty of cases I found that  even 
the simplest initial states rapidly evolve chaotically. 4 This suggests that  if 
any of these correspond to a quan tum mechanical  system in the way the 
model  of the previous section does, then this should be extremely 
complicated, comparable  to an interacting quan tum field theory. 

H o w  do we construct  the corresponding Hamil tonian?  A formal 
solution is easy to construct.  The evolution opera tor  (5.1) is a special 
element of the permuta t ion  group p(NV). Any element of  P(N v) can be 
written as a p roduc t  of cyclic elements, 

U(t + 1, t) = [ I  Pc(N(i)); ~ N(,) <<. N v (5.2) 
i i 

We have 

pN(,, = 1 (5.3) 

One derives that  the evolution opera tor  (5.2) has N "  (possibly degenerate) 
eigenvalues 

e 2uik/N(l) (0  <. k < N(I)) 
(5.4) 

e 2.i~/N~2~ (0 ~< k < N(2)); etc. 

By formally diagonalizing U(t + 1, t), one finds an Ho with 

U(t + 1, t) = e-i '% (5.5) 

where H0 has eigenvalues E0 at 

2rck/N(1); 2rck/N(2); etc. (5.6) 

all satisfying 

0 ~< E 0 < 2zr (5.7) 

This is, however, not a suitable Hamiltonian.  In terms of this our  
system does not  even remotely resemble a conventional  quan tum 
mechanical  system. Because of our  freedom to add or subtract  multiples of 
2zr to or  from E, we have no way to distinguish these energy levels from 
each other, and to declare that one of these is the "vacuum" would be 
totally senseless. 

4 In many cases "chaos" only sets in at time scales longer than the size of the system, so that 
disturbances had the opportunity to bounce several times against the boundary, or run 
around periodic ones. In many other models, however, extremely simple initial states start to 
evolve chaotically immediately, independent of faraway boundaries. 
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The point is that we need another Hamiltonian H, with 

U(t + 1, t ) = e  -ill  

in such a way that H is extensive, and can be written as 

(5.8) 

H = ~ .y/~(x) (5.9) 
x 

where ~f (x)  is (more or less) local. Certainly when xl and x2 are far apart 
we must be able to see that this system is local: 

[ ~ ( x , ) ,  ~ ( x 2 ) ]  --, 0 (5.10) 

How does one construct a Hamiltonian satisfying (5.9) and (5.10) [-and 
therefore certainly not (5.7)]? Note that if ~ ( x )  acts in a finite-dimen- 
sional subspace of Hilbert space, this Hamiltonian will have a unique 
ground state (and "upper state," which is of less interest). In the 
"continuum limit" the system should resemble a respectable quantum field 
theory. But does ~ ( x )  exist? 

6. C O N S T R U C T I N G  T H E  H A M I L T O N I A N  

Given a cellular automaton with a unitary evolution operator 
U(t + 1, t) that is "local," 

U = [ I  Ux (6.1) 
x 

[Ux, U x , ] = 0  if F x - x ' l > d  (6.2) 

for some d > 0 ;  can one write down a Hamiltonian H such that the 
following are satisfied?-- 

[ ~ ( x ) ,  H ( x ' ) ]  = 0 

U = e  -ill  (6.3) 

H = }-" itS(x) (6.4) 
x 

if [x-• > d '  (6.5) 

Equations (6.1) and (6.2) represent a generalization of (4.1). Most 
automata that can be constructed must be of this form. They guarantee 
locality, and a maximum speed d with which information can be transmit- 
ted. Intuitively, we would assume a Hamiltonian obeying (6.3)-(6.5) to 
exist. But what is d'? 
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Closer inspection shows that a finite d'  is probably impossible, and 
that (6.5) must be replaced by a less stringent condition, for instance, 

[ [ ~ ( x ) ,  Yf(x')] l  < f ( [x  - x'[) (6.6) 

with 

lim f ( x ) = 0  (6.7) 

One possible construction goes as follows. Write 

Ux=exp[-iA(x)] (6.8) 

Now let us divide the operators Ux into "commuting classes." If V is the set 
of points or links x at which the Ux are defined, then 

V= V 1 w V2w .-. (6.9) 

with, if possible, only a finite number of nonoverlapping subsets Vi, such 
that if xl and x2 are in the same subset Va, then 

[Uxl, Ux2] =0 (xl~ Vo, x2~ V~) (6.10) 

For example, in a one-dimensional chain, V1 could be the set of even 
points and V2 the set of odd points. 

We can then write (if necessary after some further transformations) 

U =  UI" U2""  (6.11) 

with 

U a = e x p [ - i  ~ A(x)]-exp(-iAa) (6.12) 
x E  V a 

Now we can use the Baker-Campbell-Hausdorff  expansion 

eAeB=exp{A + B +  �89 B] + I [ A ,  [A, B ] ]  + i l I A ,  B], B] 

+ ~4[[A, [A, B]],  B ] _  ...} (6.13) 

a series containing only commutators. In the simplest case, Eq. (6.11) only 
contains two terms, so that (6.13) must be used only once; otherwise, we 
just repeat it several times. 

Each term in (6.13) is now of the desired form (6.4), (6.5), as one can 
easily see. But each commutator  connects points x and x' that are a 
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distance d apart, and it follows that terms of order n in Aa, Ab, will yield 
contributions to Yf(x) that obey (6.5), but with 

d ' = n d  (6.14) 

Therefore, (6.6) and (6.7) correspond to requiring a sufficient degree of 
convergence of the Bake~Campbel l -Hausdorff  series. One can prove 
that if 

eAee= e F (6.15) 

then the series for F converges uniformly only if the eigenvalues of F lie 
within an interval smaller than 2~z (see Appendix A). What this really 
means is that each term in (6.13), when commuted with one of the others, 
should have eigenvalues not further than 2re apart. This, unfortunately, is 
not good enough for us. By construction, F will be extensive, and its 
eigenvalues should grow proportionally with the volume. 

Note that there is some arbitrariness in this construction because one 
may add or subtract multiples of 2re to the eigenvalues of each of the 
operators Aa(x). This freedom corresponds to the freedom to choose the 
relative phases of the primordial states when combined to give the 
eigenstates of H. 

Now the first few coefficients of the BCH series seem to converge 
rather rapidly and one might hope that these, possibly improved by some 
resummation procedure, will already give quite good approximate 
expressions for an extensive Hamiltonian. But since its eigenvalues will be 
further apart than 2~z, we expect no absolute convergence, so we searched 
for a better way to relate quantum field theories with cellular automata. 

We found a Hamiltonian with constraint that can reproduce the 
automaton described by (5.1) directly if x space is one-dimensional and the 
pairs (x, x ')  are nearest neighbors only. Take the one-dimensional massless 
fermion gas of Section 3, but now allow the right- and left-goers each to 
come in N varieties. Left-goers are constrained in the initial state to stay 
further apart than some limiting distance d, and so are the right-goers. We 
now impose that whenever a left-goer at x'  meets a right-goer at x, with 
] x ' - x t  < d ' ~  d, then both transform according to the permutation Ux.x,, 
while at the same time they continue their paths. 

The distances between all pairs of left-goers will stay constant, and so 
the constraint that they stay further apart than d will be obeyed at all 
times, and idem ditto for the right-goers. 

A Hamiltonian that reproduces this law of evolution can he written as 

H = H o + H 1 (6.16) 
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with [as in Eq. (3.20)] 

Ho = d x  
i 

(6.17) 

O 1 ~-  

with 

dx dx' ~ TT(x) P_ Tk(x) Wuk, f ( x - -  x') ~](x') P + Tl(x') 
ijkl 

(6.18) 

f ( x - x ' ) = O  if Ix-x'l >d' (6.19) 

and W to be specified later. P+ are projection operators projecting out 
left-goers and right-goers, respectively. 

Remember that we have not (yet) filled the Dirac sea, so T* allways 
creates a particle and T annihilates. This, with the constraint, allows us to 
solve the Schr6dinger equation exactly. Consider a right-goer approaching 
a left-goer. They are in a state 

~9(i, x, j, x') = r j, t) A(x - t) B(x' + t) (6.20) 

where i, x refer to the right-goer and x', j to the left-goer. Lower-case ~ is a 
wave function, not an operator field. For the functions A and B we will 
later substitute Dirac delta functions. 

The Schr6dinger equation, 

implies 

Ot~/~t = --iH~9 

I 0  t, 1 ~-~ r j, t) AB=~Wijk ,  f ( x - x ' ) O ( k , l , t ) A B  (6.21) 
kl 

Now choosing 

we get 
A = 6(x - t); B = 6(x + t) (6.22) 

Ot r j, t) = ~ Wok, f(2t ) r l, t) (6.23) 
kt 

After the small interval during which the particles cross ( f4 :0 )  the 
state ~b(0') transforms into Ur where the N 2 • N 2 transformation matrix 
U is determined by 

U = e x p [ W f ~  f (2t)dt]  (6.24, 

which we take to be our deterministic U. 
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Thus, if (6.24) is satisfied, and the constraint mentioned earlier, then 
(6.16) is the Hamiltonian for our automaton. Now, if we want to consider 
it as a quantum mechanical Hamiltonian, we need to know its ground 
state. This only exists if we discretize x space (as in Section 3), using 
meshes with length d" (0 ~ d " ~  d ' <  d). Our discretized Hamiltonian will 
reproduce the cellular automaton approximately but not exactly, because 
contrary to (3.20), Eq. (3.18) is nonlocal. 

7. C O N C L U S I O N S  

We have constructed various models illustrating an aspect of quantum 
mechanics that seems to have received little attention: the possibility to 
have a set of ever-commuting observables that algebraically generate the 
entire Hilbert space. The construction in Section6 shows that this 
possibility may even persist in quantum field theories with interactions 
such as the four-fermion interaction. The possible existence of such obser- 
vables is of little relevance for interpreting the laws of quantum mechanics 
at the level of atoms, molecules, or even elementary particles. The 
"paradoxical" properties of electrons and hydrogen atoms remain, but may 
become a little more acceptableJ 3) We know that macroscopic observables 
such as the position of a pointer on a scale, the state of a particle counter, 
etc., all commute, a statement that does not contradict the standard rules 
because these observables are extremely incomplete. We now conjecture 
that they also commute with the primordial variables. 

The only distinction, then, between a quantum theory and a deter- 
ministic "primordial" theory is that in the quantum system we decided to 
consider nonprimordial observables, i.e., observables that mix different 
primordial states. The fundamental theory that I propose in this paper is 
that, for describing the real world, a complete set of such primordial obser- 
vables can be found, in terms of which we can formulate the fundamental 
laws of physics, and that the nonprimordial observables are not essential. 
They are needed only to enable physicists to make statistically significant 
predictions of the future at large distance scales, where the microscopic 
primordial observables are by far too complicated and change much too 
rapidly (chaotically?) to be directly observed. It is quite conceivable that 
these microscopic primordial observables are only relevant at the Planck 
scale (of course, our description of the "spinning particle" should be seen 
as a model, not as a theory for the primordial variables describing real 
electrons in some magnetic field). 

This theory implies a statement about "reality." It is tempting to 
suggest that this will be the only acceptable answer to the cosmology 
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problem mentioned in the introduction: the observables describing the very 
first picoseconds of the universe were primordial observables. They com- 
mute with the present macroscopic observables, and hence are uniquely 
measurable by careful observations today, in principle. 

But many conceptual problems are still mysterious. One conceptual 
difficulty in our theory that we will have to learn to understand is that a 
density matrix e - ~ H  describes "chaos" at all values of/~, including 0 and oo. 
It then becomes a mystery how fl can be determined from a given solution 
of the cellular automaton.  I leave many such questions open, but I am 
convinced that they will not invalidate the theory. 

One might wonder, as I did, how phase factors and interference 
phenomena can be explained in such a theory. I now suspect that indeed 
phase factors are arbitrary, but as soon as one introduces an extensive 
Hamiltonian to describe the evolution in a way that we are used to, one of 
the eigenstates of the evolution operator will play the role of the "vacuum." 
If we made no assumption about  the existence of any Hamiltonian at all 
and did not know which is its lowest eigenstate, then we would not know if 
our "experiments" are surrounded by a "vacuum," and we would have no 
way to talk about  "interference." 

It should be possible to verify the statement that the present "standard 
model" describing all known interactions among elementary particles, 
including gravity, can ultimately be written in terms of primordial obser- 
vables only. To think that a (3 + 1)-dimensional world can be described in 
terms of primordial observables only is not crazy, as I did demonstrate. 

Quantum gravity remains as difficult as ever. Since energy is now a 
rather ambiguous concept in the present theory, it is even harder to 
understand how it can act as a source of space-time curvature. But I claim 
that it is the entire Hamiltonian one should look at, which is the one that 
includes the gravitational forces. It describes the quantum evolution of 
space-time and matter  together, and we know that the Einstein-Hilbert 
action is one of the very few possibilities left by demanding general 
relativistic invariance. So I suggest that one should try to construct just any 
deterministic cellular au tomaton that allows space-time to be not flat. 
Lattices such as the ones discussed in ref. 8 could work, but it seems to be 
extremely difficult to design any law of evolution at all that avoids the 
paradoxes that arise from gravitational collapse. 

It may be remarked that primordial variables are particularly easy to 
find in one space and one time dimension (the massless bosonic case can be 
handled in a way similar to the fermionic case). So I suggest that the 
presently popular  superstring theories might lead the way to primordial 
variables for the real world. 

Finally, the present observations may possibly lead to applications in 
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more conventional particle physics: perhaps a cellular automaton can be 
found that has Q C D  as its thermodynamic limit, so that it can be used as a 
three-dimensional computer  model for numerical simulations. 

APPENDIX  A. CONVERGENCE OF THE 
B A K E R - C A M  PBELL-HAUSDOR FF SERIES 

Consider two operators A and B, which in general will be assumed to 
act in an infinite-dimensional Hilbert space, but we are especially interested 
in the case that they can be written as 

A = ~ [ A ( x ) ;  B = ~  B(x) (A.1) 
x x 

where A(x) and B(x) act only in a finite-dimensional subspace and are 
bounded from below and above. We are interested in an operator F(2) 
satisfying 

e F(~') = eAe ~'B (A.2) 

where 2 is a complex variable. 
F()~) is not uniquely determined by (A.2), because changing one of its 

eigenvalues by a multiple of 27ri leaves (A.2) unaltered. But we can in 
addition to (A.2) require 

F(0) = A (A.3) 

and choose a path in 5o space that avoids possible singularities of F. The 
question is whether such a path exists that connects 2 = 0 with 2 = 1 and 
whether F(1) is indeed determined by the Baker-Campbel l -Hausdorf f  
series. 

We have 

d e  F(;) = f~ dx e (1 ,:)F dF xF d2 " --~ e = eF B (A.4) 

and 

X 2 

e -  X'~'Ge xF= G + xE G, F] + ~. [ [G,  F] ,  F]  

X 3 

+ -~. [ [ [a, F], F], F] + . . .  (A.5) 

to be found by repeated differentiation in x. 
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Let us introduce the short-hand notation 

"[G, Fn] ' ' -  [ [ . . .  [G, F], F],...], F] (1.6) 

and rewrite (A.5) as 

e XFGeXF = " [ G ,  e xg]'' (A.7) 

where the function inside the " [ - ]"  symbols is to be expanded in a power 
series. 

We then have 

Now, 

so that 

dF "[- F ]" 
- ~ =  LB, ~ J  (A.9) 

F 
eF--1 

1 B2 F 2 B4 4 -1 - -~F+~- .T  +~-.~ F + - . .  (A.10) 

dF 1 92 B-~ [B, F] +-ZT [[B, F], F] 
d2 z z [  

9 4 
+ ~ [ [ [ [B ,  F], F], F], F] + ... (A.11) 

from which the Baker Campbell-Hausdorff series (6.13) can now easily be 
constructed. 

Equation (A.11) can also be used to study convergence of the series. 
As long as (A.11) converges, the function F(2) will be a well-defined 
analytic function of 2. Suppose we have a basis in which F(2), for certain 2, 
is diagonal: 

F l f >  = f l f )  (1.12) 

Then (A. 11) reads 

dF Af 
<AI ~ Ff~> = e T ~  1 <AI B IA); zf  =f2 - L  (1.13) 

where 92 = 1/6, 94 = --1/30,. . . ,  are the Bernoulli numbers. So, one finds 
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The expansion in A f  converges if 

IAfl = If2-Nil < 2~c (A.14) 

This certainly holds if all eigenvalues of F are within an interval of length 
2~r, but this is precisely what we did not want: F was supposed to become 
the Hamiltonian, an extensive operator, whose eigenvalues may at best be 
within bounds that grow proportionally with the volume. 

Since (A.14) is probably a necessary condition for the Baker- 
Bampbell-Hausdorff series to converge, we must impose that in the f basis 
the only nonvanishing matrix elements of B must be ones satisfying (A.14) 
as a selection rule. I do not know whether it is possible to obey this rule 
exactly or only approximately. It should hold on a curve in 2 space from 0 
to 1. Note that we do not have to insist that F(2) be a continuous function 
of L Its eigenvalues could flip by multiples of 2~z, so that (A.14) can be 
recovered if the f values in large matrix elements of B would tend to float 
apart. 

The condition can also be written as 

I<Lt [r, B l lA>l  <2~z I<AI B If2>[ (A.15) 

A P P E N D I X  B. C O N T I N U O U S  V E R S U S  D I S C R E T E  T I M E  STEPS 

Suppose we have a deterministic set of equations determining the 
evolution of a physical system as a function of time. Let us first take time 
to be continuous, and assume the equations to be first-order differential 
equations. Let the parameters be described by some finite or infinite set of 
numbers qi, with 

dq,/dt =L{q} (B.1) 

We can always decide to define a Hilbert space spanned by the states 
{tql, q2 .... )}, and define the associated momenta 

Pi = - i  #/Oqi 

The quantum mechanical "Hamiltonian" generating (B.1) is then 

(B.2) 

H=~f,{q}p, (B.3) 
i 

Thus, every deterministic system is equivalent to a quantum system 
with Hamiltonian (B.3). The snag is, the Hamiltonian (B.3) is not the usual 
energy and it certainly is not bounded from below, whatever the functions 



344 "t H o o f t  

fi  are. So, no deterministic system with continuous time corresponds to a 
physically acceptable quantum world. Now the model of Section 4 may 
seem to be an exception, but it is not, because we had to fill up a Dirac sea 
to find the "bot tom" of the Hamiltonian. This procedure is only finite if we 
introduce some cutoff in momentum space, which in turn will be equivalent 
to introducing some minimal length of time. 

If time steps are discrete, we must replace (B.1) by 

q,(t+ 1)= fi{q(t)} (B.4) 

which now allows a finite-dimensional Hilbert space of states ]q). In terms 
of these we can write the "quantum mechanical" evolution operator 

U(t, t +  1)[q) = I f (q ) )  (B.5) 

and it is certainly possible to write U as 

U =  e m (B.6) 

where H is bounded from below. In principle one could choose all energy 
eigenvalues to be between 0 and 27z, but the requirement that H be 
extensive in general leads to eigenvalues that are much further apart. 

NOTE A D D E D  IN PROOF 

The role of cellular au tomata  in the fundamental laws of physics has 
been speculated on before. I thank E. Fredkin for further discussions and 
suggesting further references. (9) 
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